

MDWC12D024PERH

Common-Drain Dual N-Channel Trench MOSFET 12V, 2.4 $m\Omega$

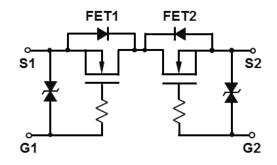
General Description

The MDWC12D024PERH uses advanced Magnachip's MOSFET Technology, which provides high performance in on-state resistance and excellent reliability. Excellent low $R_{\text{SS(ON)}}$, low gate charge operation and operation for Battery Application.

Features

- Vss = 12V
- Source-Source ON Resistance;


 $\begin{array}{ll} R_{SS(ON)}\,<\,2.2 m\Omega & @\ V_{GS} = 4.5 V \\ R_{SS(ON)}\,<\,2.4 m\Omega & @\ V_{GS} = 3.8 V \\ R_{SS(ON)}\,<\,3.0 m\Omega & @\ V_{GS} = 3.1 V \end{array}$


 $R_{SS(ON)} < 5.8 m\Omega$ @ $V_{GS} = 2.5 V$

Applications

- Portable Battery Protection

Bottom View

2.08mm x 1.45mm WLCSP

1, 2, 3, 4 : Source1 (FET1) 5 : Gate1 (FET1) 6, 7, 8, 9 : Source2 (FET2) 10 : Gate2 (FET2)

Absolute Maximum Ratings

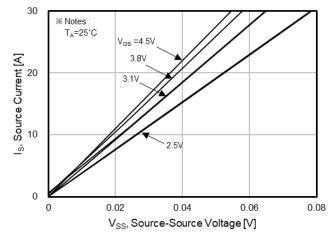
Characteristics		Symbol	Rating	Units
Source-Source Voltage		V _{SSS}	12	V
Gate-Source Voltage		V _{GSS}	±8	V
Source Current	DC*1	Is	20.7	Α
	Pulse	I _{SP}	82.8	Α
Total Power Dissipation	DC*1	P _D	1.63	W
Channel Temperature		T _{ch}	-55~150	°C
Junction and Storage Temperature Range		T _J , T _{stg}	-55~150	°C

Thermal Characteristics

Characteristics	Symbol	Rating	Unit
Thermal Resistance*1	$R_{\theta JA}$	76.9	°C/W

Dec. 2023. Rev 1.0 Magnachip Semiconductor Ltd.

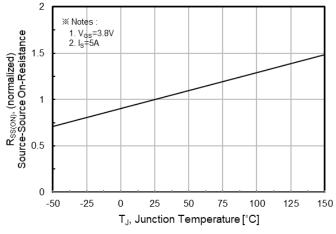
Ordering Information


Part Number	Temp. Range	Package	Package Packing Rol	
MDWC12D024PERH	-55~150 °C	WLCSP	Tape and Reel	Halogen Free

Electrical Characteristics (T_A =25°C unless otherwise noted)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Units
Static Characteristics			•		•	•
Source-Source Breakdown Voltage	BV _{SSS}	$I_S = 250uA, V_{GS} = 0V$	12	-	-	- v
Gate Threshold Voltage	V _{GS(th)}	$V_{SS} = V_{GS}$, $I_S = 250uA$	0.4	0.85	1.3	
Cut-Off Current	I _{SSS}	V _{SS} = 12V, V _{GS} = 0V	-	-	1	μΑ
Gate Leakage Current	I _{GSS} 1	$V_{GS} = \pm 8V$, $V_{SS} = 0V$	-	-	10	μΑ
	I _{GSS} 2	$V_{GS} = \pm 5V$, $V_{SS} = 0V$	-	-	1	
		$V_{GS} = 4.5V, I_{S} = 5.0A$	-	1.85	2.20	mΩ
Ossans Ossans Basistanas		$V_{GS} = 3.8V, I_{S} = 5.0A$	-	1.95	2.40	
Source-Source Resistance	R _{SS(ON)}	V _{GS} = 3.1V, I _S = 5.0A	-	2.20	3.00	
		V _{GS} = 2.5V, I _S = 5.0A	-	2.90	5.80	
Dynamic Characteristics*1	•	1	.		l	•
Total Gate Charge	Q_g	V _{DD} = 6V, I _S = 5.0A, V _{GS} = 3.8V	-	28.4	-	nC
Gate-Source Charge	Q_{gs}		-	4.4	-	
Gate-Drain Charge	Q_{gd}		-	9.3	-	
Input Capacitance	C _{iss}		-	2,730	-	pF
Reverse Transfer Capacitance	C _{rss}	$V_{SS} = 6V, V_{GS} = 0V, f = 50kHz$	-	383	-	
Output Capacitance	Coss		-	435	-	
Turn-On Delay Time	t _{d(on)}		-	0.02	-	- μS
Rise Time	t _r	$V_{GS} = 3.8V, V_{DD} = 6V,$ $I_{S} = 5.0A, R_{GEN} = 3\Omega$	-	0.15	-	
Turn-Off Delay Time	t _{d(off)}		-	6.67	-	
Fall Time	t _f]	-	8.11	-	
Drain-Source Body Diode Characteristic	cs	•	•	•		•
Source-Source Diode Forward Voltage	VF _(S-S)	I _F = 5A, V _{GS} = 0V	-	0.70	1.2	V

Note *1. Test on PCB board (60.0mm x 15.0mm x 1.0t)


Characteristic Graph*1

 $R_{\mathrm{SS(ON)}}$, Source-Source On-Resistance [m Ω] 4.0 ※ Notes T_A=25°C 3.5 2.5V 3.0 3.1V 2.5 2.0 1.5 3.8V V_{GS}=4.5V 1.0 3 I_S, Source Current [A]

Fig.1 On-Region Characteristics

Fig.2 On-Resistance Variation with Drain Current and Gate Voltage

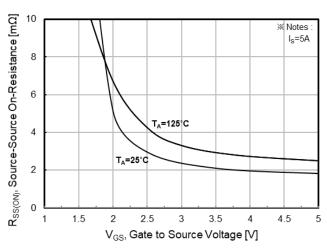
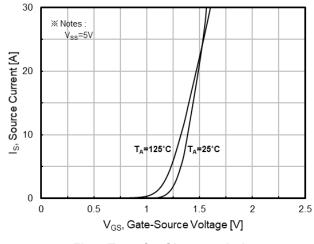



Fig.3 On-Resistance Variation with Temperature

Fig.4 On-Resistance Variation with Gate to Source Voltage

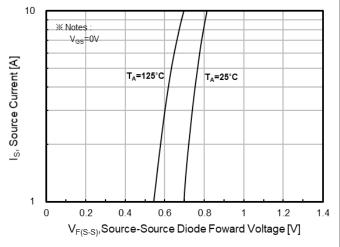


Fig.5 Transfer Characteristics

Fig.6 Forward Source to Source Characteristics

Characteristic Graph*1 Sequence (bc) (Solution of the content of

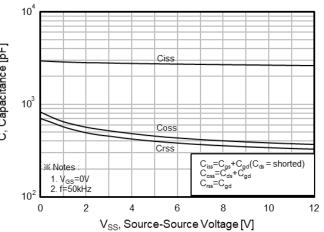


Fig.8 Capacitance Characteristics

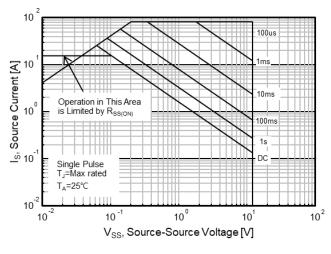


Fig.9 Maximum Safe Operating Area

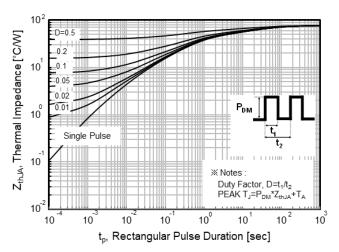
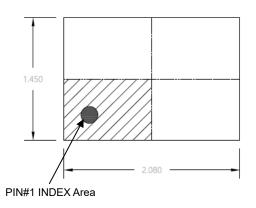
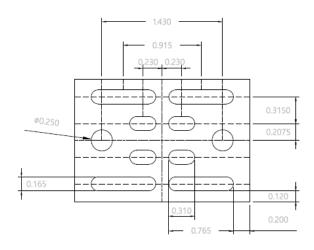




Fig.10 Transient Thermal Response Curve

PACKAGE OUTLINE

TOP VIEW (Mark Side)

BOTTOM VIEW

SIDE VIEW

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. GENERAL TOLERANCE: ±0.03mm
- 3. PACKAGE BODY SIZES EXCLUDE FLASH & BURRS

DISCLAIMER:

The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. Seller's customers using or selling Seller's products for use in such applications do so at their own risk and agree to fully defend and indemnify Seller.

Magnachip reserves the right to change the specifications and circuitry without notice at any time. Magnachip does not consider responsibility for use of any circuitry other than circuitry entirely included in a Magnachip product. Magnachip is a registered trademark of Magnachip Semiconductor Ltd.