

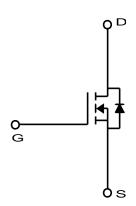
AMDD14N25CRH

N-Channel MOSFET 250V, 10.2A, 0.28 Ω

General Description

This N-channel MOSFET is produced using advanced Magnachip's MOSFET Technology, which provides low onstate resistance, high switching performance and excellent quality.

This device is suitable for SMPS, high speed switching and automotive or industrial purpose applications.


Features

- $^{\circ}$ $V_{\rm DS} = 250 {\rm V}$
- $I_D = 10.2A$
- □ $R_{DS(ON)} \le 0.28\Omega @V_{GS} = 10V$
- AEC-Q101 qualified
- Pb-free plating, halogen-free

Applications

- Power supply
- Motor control
- Car inverter
- High current, high speed switching

Absolute maximum ratings (Tc = 25°C unless otherwise specified)

Characteristics Drain-source voltage Gate-source voltage		Symbol	Rating	Unit
		V _{DSS}	250	V
		V _{GSS}	±30	V
Continuous drain surrent	T _C =25°C	,	10.2	А
Continuous drain current	T _C =100°C	I _D	7.2	А
Pulsed drain current ⁽¹⁾		I _{DM}	40.8	А
Power dissipation	T _C =25°C	D	144	W
	Derate above 25°C	P_{D}	0.96	W/°C
Peak diode recovery dv/dt ⁽³⁾		d <i>v</i> /d <i>t</i> 4.5		V/ns
Repetitive avalanche energy ⁽¹⁾		E AR	6.94	
Avalanche current ⁽¹⁾		I _{AR}	10.2	
Single pulse avalanche energy ⁽⁴⁾		E _{AS}	550	
Junction and storage temperature range		T _j , T _{stg}	-55~175	°C

Thermal characteristics

Characteristics	Symbol	Rating	Unit
Thermal resistance, junction-to-ambient ⁽¹⁾	$R_{ heta JA}$	41.9	0CAM
Thermal resistance, junction-to-case ⁽¹⁾	Rejc	1.04	°C/W

Ordering information

Part Name	Marking	Temp. Range	Package	Packing	RoHS Status
AMDD14N25CRH	14N25C	-55~175°C	TO-252(DPAK)	Reel and tape	Compliant

Electrical characteristics ($T_c = 25^{\circ}$ C unless otherwise specified)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
Static characteristics	•			•		
Drain-source breakdown voltage	BV _{DSS}	$I_{\rm D} = 250 \mu{\rm A}, \ V_{\rm GS} = 0 {\rm V}$	250	-	-	V
Gate threshold voltage	$V_{GS(th)}$	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 250 \mu {\rm A}$	2.0	-	4.0	
Drain cut-off current	I _{DSS}	$V_{DS} = 250 \text{V}, \ V_{GS} = 0 \text{V}$	-	-	1	μΑ
Gate leakage current	I _{GSS}	$V_{GS} = \pm 30 \text{V}, \ V_{DS} = 0 \text{V}$	-	-	100	nA
Drain-source on-resistance	R _{DS(ON)}	$V_{\rm GS} = 10 \text{V}, I_{\rm D} = 5.1 \text{A}$	-	0.22	0.28	Ω
Forward transconductance	<i>g</i> fs	$V_{DS} = 30V, I_{D} = 5.1A$	-	8.5	-	S
Dynamic characteristics						
Total gate charge	Qg	$V_{\rm DS} = 200 \text{V}, \ I_{\rm D} = 14.0 \text{A}, \ V_{\rm GS} = 10 \text{V}$	-	20.0	-	nC
Gate-source charge	$Q_{\rm gs}$		-	4.5	-	
Gate-drain charge	Q_{gd}		-	8.9	-	
Input capacitance	C _{iss}	$V_{DS} = 25V, \ V_{GS} = 0V, \ f = 1.0MHz$	-	741	-	pF
Reverse transfer capacitance	C _{rss}		-	15	-	
Output capacitance	Coss		-	142	-	
Turn-on delay time	$t_{\sf d(on)}$		-	13	-	
Rise time	t _r	$V_{GS} = 10V, V_{DS} = 125V, I_D = 14.0A,$	-	42	-	
Turn-off delay time	$t_{\sf d(off)}$	$R_{\rm G}$ = 25 $\Omega^{(3)}$	-	44	-	ns
Fall time	t _f		-	28	-	
Drain-source body diode characteristics	S					•
Maximum continuous drain to source diode forward current	Is		=	-	10.2	А
Source-drain diode forward voltage	V _{SD}	$I_{\rm S} = 10.2 {\rm A}, \ V_{\rm GS} = 0 {\rm V}$	-	-	1.4	V
Body diode reverse recovery time	t _{rr}	$I_{\rm F} = 14.0 \text{A}, \text{d} i / \text{d} t = 100 \text{A} / \mu \text{s}^{(3)}$	-	174	-	ns
Body diode reverse recovery charge	Q _{rr}	1F = 14.0Λ, α//αι = 100Λ/μ5	-	1.0	-	μC

Note

^{1.} Pulse width is based on $R_{\rm BJC}$ & $R_{\rm BJA}$ and the maximum allowed junction temperature of 175°C

^{2.} Pulse test: pulse width \leq 300us, duty cycle \leq 2%, pulse width limited by junction temperature $T_{j, \text{max}}$ =175°C

^{3.} $I_{SD} \le 10.2 \text{A}$, $di/dt \le 300 \text{A/us}$, $V_{DD} \le \text{BV}_{DSS}$, $R_g = 25 \Omega$, Starting $T_j = 25 ^{\circ}\text{C}$

^{4.} L = 8.5mH, $I_{AS} = 10.2$ A, $V_{DD} = 50$ V, $R_g = 26\Omega$, Starting $T_j = 25$ °C

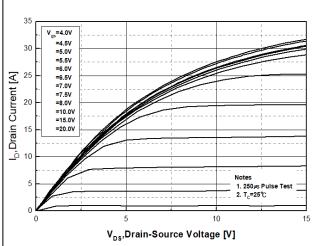
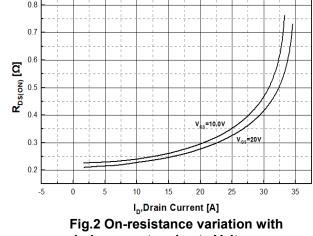



Fig.1 On-region Characteristics

drain current and gate Voltage

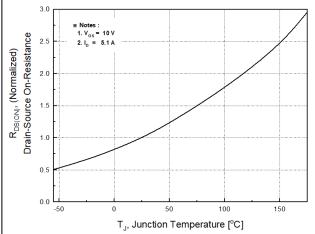


Fig.3 On-resistance vs. temperature

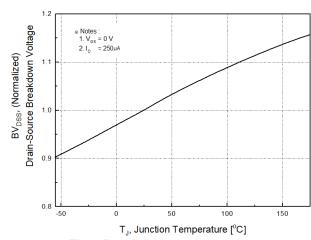
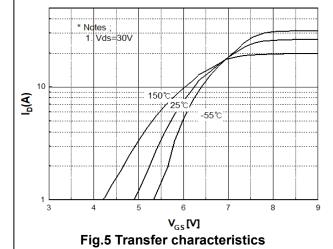



Fig.4 Breakdown voltage vs. temperature

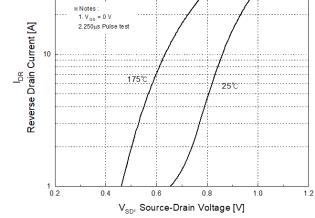


Fig.6 Body diode forward voltage variation with source current and temperature

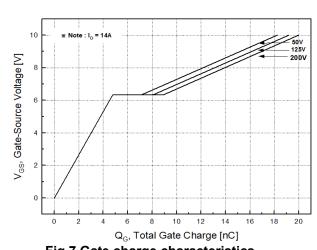


Fig.7 Gate charge characteristics

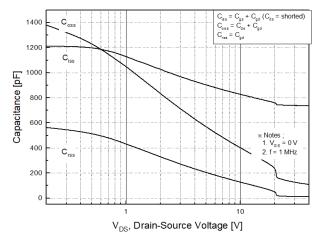


Fig.8 Capacitance characteristics

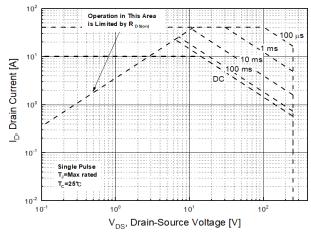


Fig.9 Maximum safe operating area

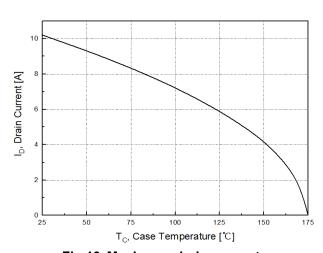


Fig.10 Maximum drain current vs. case temperature

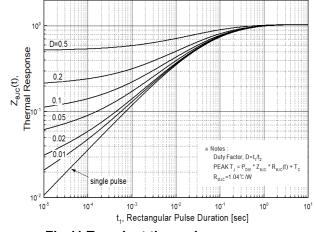
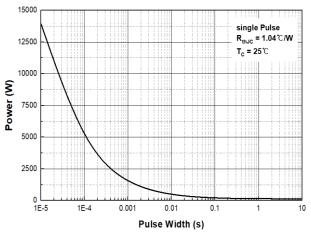
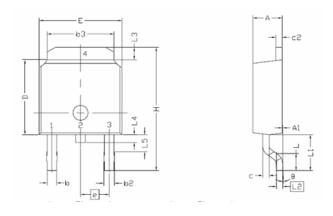
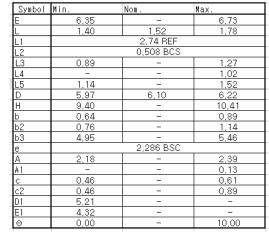
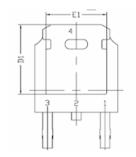


Fig.11 Transient thermal response curve


Fig.12 Single pulse maximum power dissipation


Physical dimension

TO-252

Dimensions are in millimeters, unless otherwise specified

