

MAP3622

2-CH Average Current Control Buck Controller for LED Backlight

General Description

MAP3622 is a 2 channel average-mode current control buck controller for LED backlight application. It does not require an additional dimming MOSFET and utilizes constant off-time control and average current control feedback without external loop compensation or high-side current sensing.

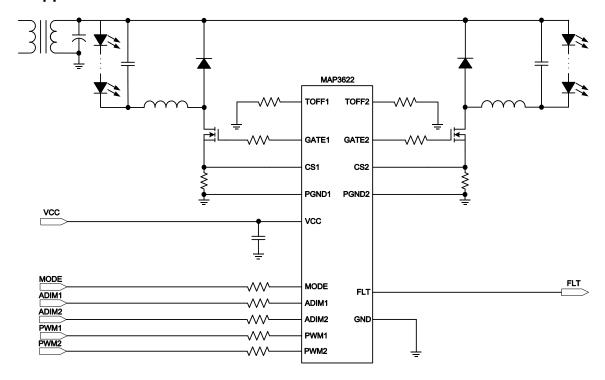
MAP3622 features ±1% CS voltage accuracy and has dedicated Independent analog dimming input up to 3.3V. It can be powered from 8.5V ~ 18V supply.

MAP3622 provides MOSFET DS short (FLT output), sense resistor short protection, SCP and UVLO.

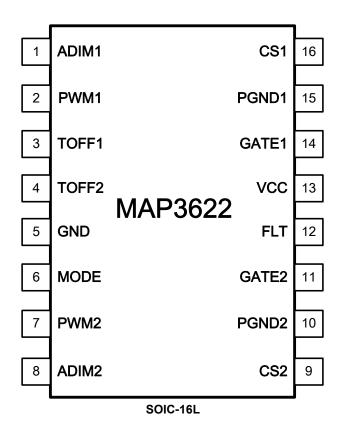
MAP3622 is available 16 leads SOIC with Halogen-free (fully RoHS compliant).

Features

- 8.5V to 18V Input Voltage Range
- Average-Mode Current Control
- Mixed Programmable Constant Off-time
- Up to 3.3V Independent Analog Dimming
- ±1% CS Voltage Accuracy
- Independent Direct PWM Dimming Input
- Fault Output
 - MOSFET Drain-Source Short
- Short Circuit Protection
- Sense Resistor Short Protection
- UVLO
- 16 Leads SOIC Package with Halogen-free


Applications

- High Brightness white LED backlighting for LCD TVs
- General LED lighting applications

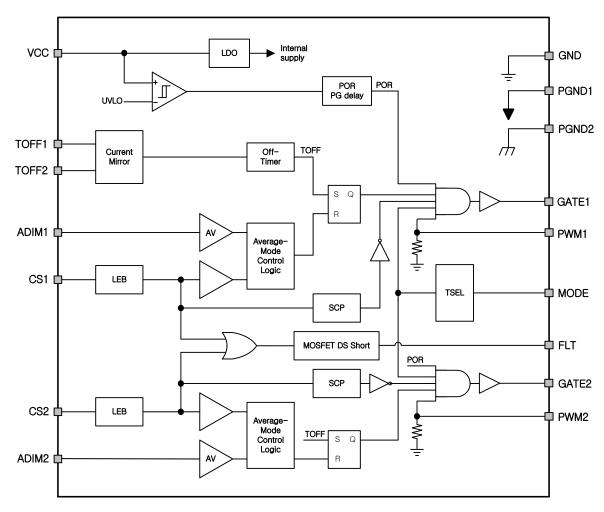

Ordering Information

Part Number	Top Marking	Ambient Temperature Range	Package	RoHS Status
MAP3622SIRH	MAP3622	-40°C to +85°C	16Leads SOIC	Halogen Free

Typical Application

Pin Configuration

Pin Description


16leads SOIC	Name	Description	
1	ADIM1	Setting for CH1 LED current thru external DC voltage	
2	PWM1	PWM signal input for CH1	
3	TOFF1	Setting for normal switching off-time (Note 1)	
4	TOFF2	Setting for initial switching off-time (Note 1)	
5	GND	Signal Ground	
6	MODE	Setting for duration time that initial switching off-time(TOFF2)	
7	PWM2	PWM signal input for CH2	
8	ADIM2	Setting for CH2 LED current thru external DC voltage	
9	CS2	External current sense for CH2(Note 2)	
10	PGND2	Power GND for CH2	
11	GATE2	GATE driver output to drive external NMOSFET for CH2	
12	FLT	Fault Output	
13	VCC	Power supply input. Need external bypass capacitor.	
14	GATE1	GATE driver output to drive external NMOSFET for CH1	
15	PGND1	Power GND for CH1	
16	CS1	External current sense for CH1(Note 2)	

Note 1: Connect external resistor to GND to set Switching off-time as shown in typical application

Note 2:

Connect external resistor to PGNDx to sense the external power MOSFETx source current as shown in typical application

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Min	Max	Unit
$V_{VCC}, V_{GATEx}, V_{PWMx}, V_{MODE}$	VCC, GATEx, PWMx, MODE pins Voltage	-0.3	20	V
$V_{\text{CSx}},V_{\text{TOFF1/2}},V_{\text{ADIMx}},V_{\text{FLT}}$	CSx, TOFF1/2, ADIMx, FLT pins Voltage	-0.3	5.5	V
T _{PAD}	Soldering Lead/ Pad Temperature 10sec		300	°C
T_J	Junction Temperature	-40	+150	°C
Ts	Storage Temperature	-65	+150	°C
ESD	HBM on All Pins (Note 2)	-2000	+2000	V
ESD	MM on All Pins (Note 3)	-200	+200	_ v
	CDM on All Pins (Note 4)	-500	+500	

Note 1: Stresses beyond the above listed maximum ratings may damage the device permanently. Operating above the recommended conditions for extended time may stress the device and affect device reliability. Also the device may not operate normally above the recommended operating conditions. These are stress ratings only.

Note 2: ESD tested per JESD22A-114. Note 3: ESD tested per JESD22A-115. Note 4: ESD tested per JESD22C-101

Recommended Operating Conditions (Note 1)

Parameter			Max	Unit
V _{Vcc} Supply Input Voltage			18.0	V
V_{ADIMx}	ADIMx Input Range	0.0	3.3	V
T _A	Ambient Temperature (Note 2)	-40	+85	°C

Note 1: Normal operation of the device is not guaranteed if operating the device over outside range of recommended conditions.

Note 2: The ambient temperature may have to be derated if used in high power dissipation and poor thermal resistance conditions.

Package Thermal Resistance (Note 1)

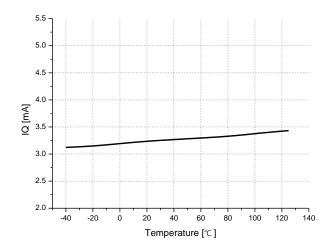
Parameter			θJC	Unit
MAP3622SIRH	16 Leads SOIC	65.1	25.3	°C/W

Note 1: Multi-layer PCB based on JEDEC standard (JESD51-7)

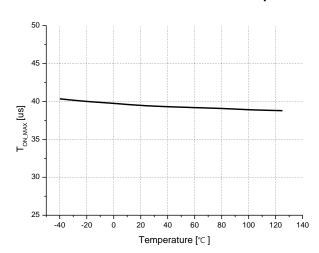
Electrical Characteristics

Unless noted, V_{VCC} = 12V, C_{VCC} = 1.0 μ F, and typical values are tested at T_A = 25 $^{\circ}$ C.

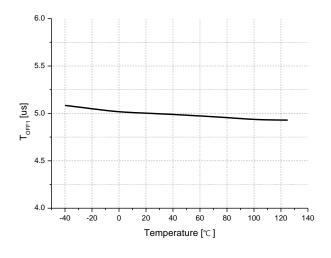
	Parameter	Test Condition	Min	Тур	Max	Unit
Supply						
V_{VCC}	Input Voltage Range		8.5		18	V
ΙQ	Quiescent Current	$V_{PWM} = 5V, V_{CS} = 0V$		5		mA
	Under Voltage Lockout	Release threshold(rising V _{VCC})	7.5	8.0	8.5	V
V_{UVLO}	Threshold Voltage on VCC pin	Lockout hysteresis(falling V _{VCC})	0.5	1.0	1.5	
t _{PG_DELAY}	Power Good Delay Time	, , , , , , ,		500		ms
OFF Timer			l l			
		R _{TOFF1} =50kΩ	4.5	5.0	5.5	
t _{OFF1}	Switching Off-time1	R _{TOFF1} =103kΩ	9	10	11	us
t _{OFF2}	Switching Off-time2	R _{TOFF2} =36kΩ		1.0		us
0112	-	V _{MODE} = 1V		112		
t _{MODE}	t _{OFF2} duration time	V _{MODE} = 3V		308		us
t _{on max}	Max. On-Time			37		us
t _{OFF MIN}	Min. Off-Time			1.2	1.5	us
D _{MAX}	Max. Duty Cycle (Note 1)	$V_{ADIMx} = 3.3V$, $t_{OFF}=1.2us$		97		%
Current Ser	nse & Dimming	,	•		U .	
V_{ADIMx}	ADIMx Input Voltage Range		0.0		3.3	V
A _V	VADIMx to CSx Voltage Ratio		0.5*(0	0.66+0.3*V	ADIM)	V/V
	00001/01/6-000	$V_{ADIMx} = 0.0V$	0.3267		0.3333	0.3333 _V
V_{CSx}	CSx Voltage	$V_{ADIMx} = 3.3V$	0.8167		0.8333	
t_{LEB}	Leading Edge Blanking Time	(Note 1)		300		ns
Logic Interf	face					
V	Logic Input Level on	V _{PWMx_L} : Logic Low			0.8	
V_{PWMx}	PWMx pins	V _{PWMx_H} : Logic High	2.0			V
R_{PWMx}	Pull-down Resistor on PWMx pins	V _{PWMx} = 4V	50	100	150	k Ω
V_{MODE}	Low Level on MODE pin			0.7		V
GATE Drive	er					
I _{SOURCE}	GATEx Source Current	$V_{GATEx} = 0V,$		300		mA
I _{SINK}	GATEx Sink Current	$V_{GATEx} = V_{VCC} = 12V$		600		mA
t _{RISE}	GATEx Output Rising Time	C_{GATEx} =1nF, V_{VCC} = 12V		70	150	ns
t _{FALL}	GATEx Output Falling Time	C_{GATEx} =1nF, V_{VCC} = 12V		35	100	ns
Protection						
V_{SCP}	SCP Detection Threshold Voltage on CS pins		2.375	2.500	2.625	٧
t _{DELAY}	SCP Delay Time			300		ns
t _{RESTART}	Restart Time			1		ms
V_{CSP}	RCS Short Detection Threshold Voltage on CS pin		0.15	0.20	0.25	V
t _{CSP}	RCS Short Detection Time			30		us
	MOSFET DS Short Detection	V _{PWMx_H} : Logic High	2.375	2.500	2.625	.,
V_{SCPDS}	Threshold Voltage on CS pin	V _{PWMx_L} : Logic Low	0.65	0.70	0.75	V
t _{SCPDS}	MOSFET DS Short Detection Time			30		us
V _{FLT}	FLT pin High Voltage		4.5		5.5	V
R _{FLT}	FLT pin Internal Resistance	I _{FLT} =100uA	500	1000	1500	Ω

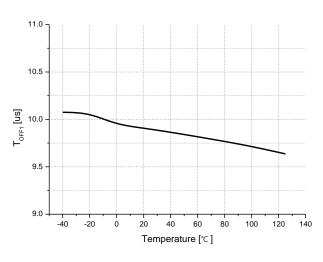

R_{FLT} | FLT pin Internal Resistance | I_{FLT}=100uA | **Note 1**: These parameters, although guaranteed by design, are not tested in mass production.

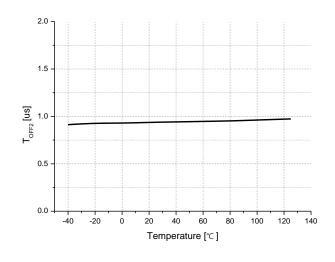
6

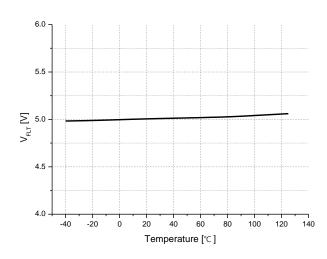

Typical Operating Characteristics

Unless otherwise noted, V_{VCC} = 12V and T_A = 25°C.

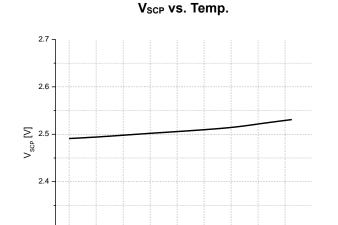

Quiescent Current vs. Temp


GATE MAX ON TIME vs. Temp.

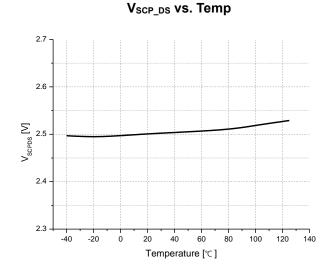

 $t_{\text{OFF1}}(R_{\text{TOFF}}\text{=}50\text{k}\Omega)$ vs. Temp.

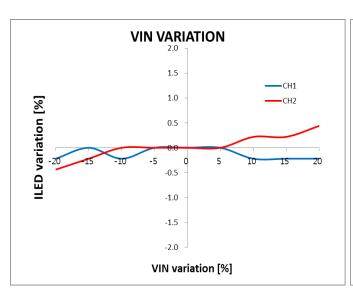

 $t_{OFF1}(R_{TOFF}=103k\Omega)$ vs. Temp.

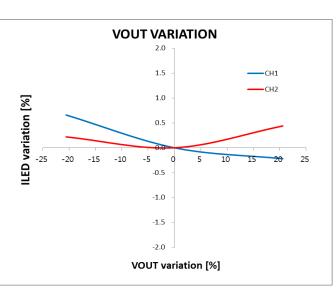
 $t_{\text{OFF2}}(R_{\text{TOFF}}\text{=}36k\Omega)$ vs. Temp.

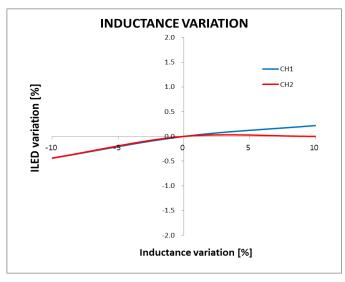

V_{FLT} vs. Temp.

Typical Operating Characteristics


Unless otherwise noted, V_{VCC} = 12V and T_A = 25°C.


-20




Temperature [°€]

100

Functional Description

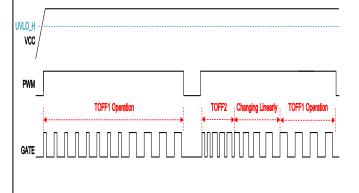
GENERAL DESCRIPTION

The MAP3622 is a 2-channel low-side single switch control, constant off-time buck controller optimized to LED backlight applications. The IC employs unique average-mode current control architecture which provides precise LED current accuracy. It does not require any external loop compensation or high side current sensing.

The IC operates at continuous conduction mode to reduce output ripple, thus small output capacitor is available. The off-time is user adjustable through the selection of an external resistor, this allows the design to be optimized for a given switching frequency range and supports wide range of input voltages.

GATE TOFF OPERATION and SETTING

The off-time of the GATE driver is programmed by an external resistor connected between the TOFF pin and ground. Do not leave this pin open.


The MAP3622 operates by changing the off time of the GATE in the PWM on Duration time.

If the output cap was discharged during the initial start-up, high-speed switching may cause LED current overshoot. So, in the first PWM on after UVLO_H, it operates with normal frequency TOFF1.

At second PWM on, it operates at GATE off time by TOFF2 and TOFF2 operation hold time is determined by MODE voltage. When TOFF2 operation is completed, TOFF1 changes to GATE OFF time. At this time, sudden change of frequency causes LED current dip. The MAP3622 improves the LED current dip phenomenon by changing the gate off time linearly for a certain period of time (70us) after the TOFF2 operation is completed.

When the MODE voltage is 1V, the TOFF2 operates for 112us, and at 3V it operates for 308us.

When the MODE voltage is 0V, the function is not used and only operates with TOFF1. Also, enabled Over Duty protection and MODE pin is default logic Low.

The off-time is calculated by following equation.

$$TOFF1 = \frac{(RTOFF1 + 1.6104)}{10.401}[us]$$

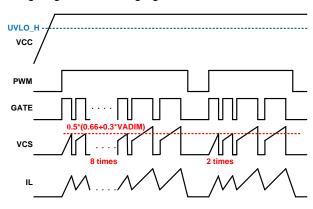
$$TOFF2 = \frac{(RTOFF2 + 5.439)}{41.308}[us]$$

MAX. ON-TIME

The max. on-time of Switching is limited 37us.

Care should be taken to choose input voltage which should not exceed this on-time limit(especially OD mode).

The on-time of Switch can be calculated by following equations.


$$D = \frac{V_{LED}}{V_{IN}}$$

$$t_{ON} = \frac{D \times t_{OFF}}{1 - D}$$

Finally, $t_{ON} < t_{ON_MAX \, Value}$

SOFT-START

The MAP3622 operates at peak current mode at initial start-up and every rising edge of PWM input to smooth inductor current ramp-up(output capacitor charging phase). The number of peak-controlled switch cycles is 8 times at initial start-up and 2 times at every PWM rising edge as following figure.

LED CURRENT

The LED current is calculated by following equation.

$$ILED = \frac{0.5 * (0.66 + 0.3 * VADIM)}{RCS}[A]$$

The ADIMx voltage range is from 0.0V to 3.3V. In terms of total system accuracy of LED current, the larger inductance and the slower switching frequency, the better accuracy.

FLT OUTPUT

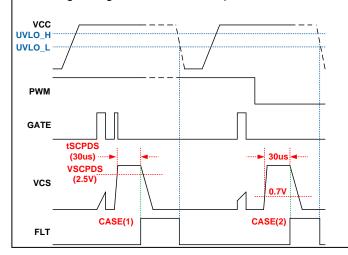
If any of following events occurs, the FLT pin goes to logic HIGH state immediately. The protection status is latched and can be cleared by applying a complete power-on-reset(POR).

MOSFET Drain-Source Short

MOSFET DRAIN-SOURCE SHORT DETECTION

The CS voltage depends on input voltage(VIN) and sense resistor(RCS) value at short status between drain and source of MOFSET.

In case the following drain-source short events of internal MOSFET occur, the FLT pin goes to logic HIGH state immediately.

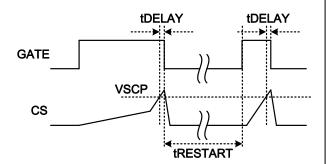

CASE(1) - At dimming(PWM=logic HIGH):

At first, SCP will be happened. Even though the Switch is off-state by SCP, if the CS voltage exceeds typ. 2.5V for more than 30us.

CASE(2) - At PMW Logic LOW:

Even though the Switch is off-state, if the CS voltage exceeds typ. 0.7V for more than 30us.

Following timing charts show this operation.


UVLO

The MAP3622 has an Internal LDO regulator to supply internal circuit. This LDO is powered up when the VCC voltage rises to UVLO release threshold.

If the voltage on the VCC pin falls below UVLO lockout threshold, the device turns-off the Switching and be reset. This ensures fail-safe operation for VCC input voltage falling.

SCP

If the CS voltage rises V_{SCP} during normal operation, the MAP3622 turns-off the Switch after $t_{\text{DELAY}}(\text{typ. }300\text{ns})$ time. The auto-restart time is typ. $1\text{ms}(t_{\text{RESTART}})$. This protects for hard instantaneous short such as catch diode, inductor or LED bar short.

RCS SHORT PROTECTION

If the CS pin is shorted to GND due to current sense resistor(R_{CS}) short, there is a potential danger of the over-current condition not being detected. The MAP3622 can protect this short event.

If the CS pin voltage is equal or lower than typ. $0.2V(V_{\text{CSP}})$ for more than typ. $30us(t_{\text{CSP}})$, the IC turns off the Swtich immediately.

Magnachip 📉

Inductor

In order to achieve accurate constant current output, the MAP3622 is required to operate in Continuous Conduction Mode (CCM) under all operating conditions. In general, the magnitude of the inductor ripple current should be kept as small as possible. If the PCB size is not limited, higher inductance values result in better accuracy of the output current. However, in order to minimize the physical size of the circuit, an inductor with minimum physical outline should be selected such that the converter always operates in CCM and the peak inductor current does not exceed the saturation current limit of the inductor.

The Min. inductance (boundary inductance) which guarantees CCM operation can be calculated as;

$$\Delta I_{LB} = 2I_{OUT}$$

$$L_{MIN} = \frac{V_{OUT}}{\Delta I_{LB}} \times t_{OFF} = \frac{V_{OUT} \times (1 - D)}{2 \times I_{OUT} \times f_{SW}}$$

The ripple current through chosen inductor is as following equation;

$$\Delta I_L = \frac{(V_{IN} - V_{OUT}) \times D}{L \times f_{SW}}$$

For example, in case V_{IN} =175V, V_{OUT} =135V, $I_{\text{OUT}}(I_{\text{LED}})$ =425mA, f_{SW} =50kHz and target ripple current=300mA;

$$D = \frac{V_{OUT}}{V_{IV}} = \frac{135}{175} = 0.77$$

$$L_{MIN} = \frac{V_{OUT} \times (1 - D)}{2 \times I_{OUT} \times f_{SW}} = \frac{135 \times (1 - 0.77)}{2 \times 0.425 \times 50 \times 10^3} = 0.73[mH]$$

The ripple current at L_{MIN} is $2*I_{\text{OUT}}=850[\text{mA}]$ and this is too large to use.

For target ripple current(ΔI_L =300mA);

$$L = \frac{(V_{IN} - V_{OUT}) \times D}{\Delta I_L \times f_{SW}} = \frac{(175 - 135) \times 0.77}{0.3 \times 50 \times 10^3} = 2.05[mH]$$

In this case, the chosen conventional inductor is 2mH/1A.

Freewheeling Diode

The freewheeling diode is chosen based on its maximum stress voltage, its maximum peak current and total power losses. The power losses are lower for a larger duty cycle and vice-versa, because the diode is opened (connected) during off-time.

Maximum voltage stress across the diode is equal to the input voltage V_{IN} , and therefore the power diode must be selected with some voltage margin. For example, if the input voltage is maximally 400 V, then maximum repetitive peak reverse voltage (V_{RRM}) should be 450 V or higher.

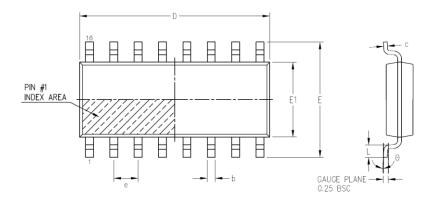
Maximum peak diode current is selected in order to calculate the inductor size. Also in this case, the catch diode must be selected with some current margin.

The voltage drop across the diode in a conducting state is primarily responsible for the losses in the diode. The power dissipated by the diode can be calculated as the product of the forward voltage and the output load current for the time that the diode is conducting. The switching losses which occur at the transitions from conducting to non-conducting states are very small compared to conduction losses and are usually ignored. The power dissipated by the catch diode is given by:

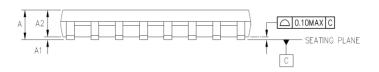
$$P_D = V_D \times I_O \times (1 - D)$$

Where, V_D is the forward voltage drop of the freewheeling diode.

Input Capacitor


Select the input capacitor to ensure that the input voltage ripple is within a desired range (1% to 5% of the input bus voltage). The input capacitor is usually electrolytic and its ESR dominates its impedance.

A $4.7\mu F$ to $22\mu F$ electrolytic capacitor will usually suffice.


Output Capacitor

Selecting a suitable capacitor can reduce LED current ripple and increase LED life-time. Note that having too large of a capacitance will cause the LED current to respond slowly. The typical value of the capacitor is $0.33\mu F$.

Physical Dimensions

Symbol	Dimension (mm)			
Symbol	Min	Nom	Max	
Α	-	_	1.75	
A1	0.10	_	0.25	
A2	1.25 –		_	
b	0.31	-	0.51	
С	0.10	_	0.25	
D	9.90 BSC			
E	6.00 BSC			
E1	3.90 BSC			
е	1.27 BSC			
L	0.40	-	1.27	
Θ	0° –		8°	

16 Leads SOIC

NOTES:

- 1. Reference JEDEC MS-012(AC)
- Package length and width do not include mold flash, protrusions or gate burrs.
- The configuration of PIN #1 identifier/chamfer feature is optional

Magnachip Semiconductor Ltd. doesn't not recommend the use of its products in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any product can reasonably be expected to result in a personal injury. Seller's customers using or selling Seller's products for use in such applications do so at their own risk and agree to fully defend and indemnify Seller.

Magnachip reserves the right to change the specifications and circuitry without notice at any time. Magnachip does not consider responsibility for use of any circuitry other than circuitry entirely included in a Magnachip product.

Magnachip is a registered trademark of Magnachip Semiconductor Ltd.

