

## Magnachip

# MDWC0152ERH

Common-Drain Dual N-Channel Trench MOSFET 12V, 15A, 5.1mΩ

#### **General Description**

The MDWC0152ERH uses advanced Magnachip's MOSFET Technology, which provides high performance in on-state resistance and excellent reliability. Excellent low  $R_{SS(ON)}$ , low gate charge operation and operation for Battery Application.

#### Features

- V<sub>SS</sub> = 12V

FET1

FET2

S2

G2

#### Applications

**S1** 

G1

- Portable Battery Protection

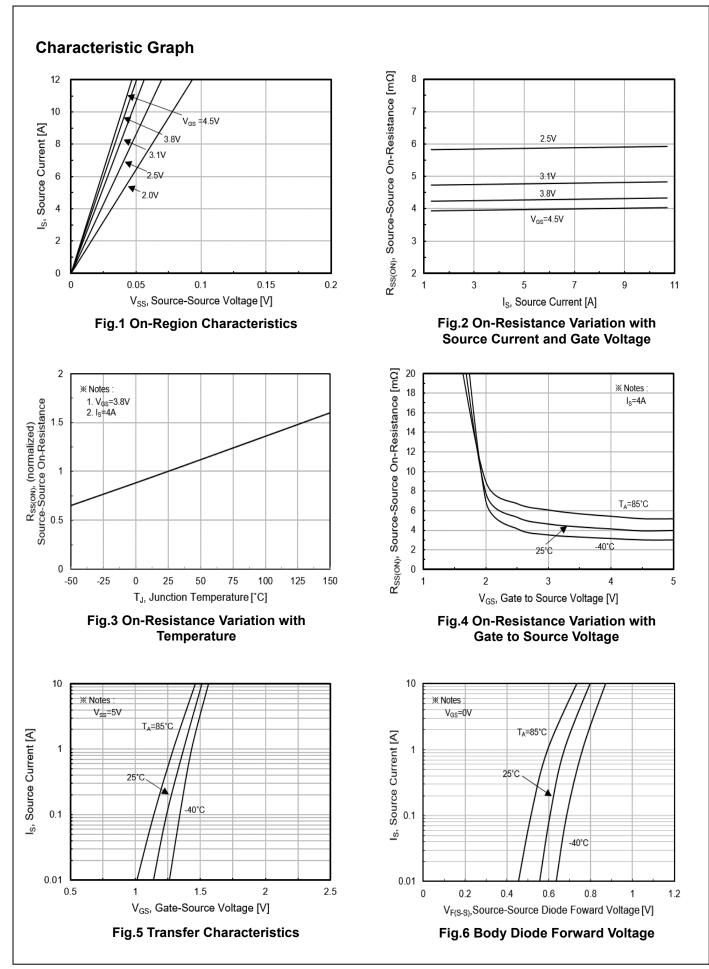
 52
 G2
 52

 51
 G1
 S1

**Bottom View** 

2.14mm\*1.67mm WLCSP




|                                           | Symbol           | Rating                            | Units       V       V |          |
|-------------------------------------------|------------------|-----------------------------------|-----------------------|----------|
| Source-Source Voltage Gate-Source Voltage |                  | V <sub>SSS</sub>                  |                       | 12<br>±8 |
|                                           |                  | V <sub>GSS</sub>                  |                       |          |
| Source Current                            | DC*1             | I <sub>S</sub>                    | 15                    | А        |
|                                           | Pulse            | I <sub>SP</sub>                   | 60                    | А        |
| Total Power Dissipation                   | DC <sup>*1</sup> | P <sub>D</sub>                    | 1.85                  | W        |
| Channel Temperature                       |                  | T <sub>ch</sub>                   | 150                   | °C       |
| Junction and Storage Temperature Range    |                  | T <sub>J</sub> , T <sub>stg</sub> | -55~150               | °C       |

### **Thermal Characteristics**

| Characteristics    | Symbol              | Rating | Unit |
|--------------------|---------------------|--------|------|
| Thermal Resistance | $R_{	ext{	hetaJA}}$ | 67.4   | °C/W |

| Part Number                                                              | Temp. R           | ange                | Package                                         | Packing                |       | <b>RoHS Status</b> |       |  |  |  |  |
|--------------------------------------------------------------------------|-------------------|---------------------|-------------------------------------------------|------------------------|-------|--------------------|-------|--|--|--|--|
| MDWC0152ERH                                                              | 0152ERH -55~150°C |                     | WLCSP                                           | Tape and Reel          |       | Halogen Free       |       |  |  |  |  |
| Electrical Characteristics (T <sub>A</sub> =25°C unless otherwise noted) |                   |                     |                                                 |                        |       |                    |       |  |  |  |  |
| Characteristics                                                          |                   | Symbol              | Test Condition                                  | on Min                 | Тур   | Max                | Units |  |  |  |  |
| Static Characteristics                                                   |                   |                     |                                                 |                        |       |                    |       |  |  |  |  |
| Source-Source Breakdown Voltage                                          |                   | BV <sub>SSS</sub>   | $I_S = 1mA, V_{GS} = 0V$                        | 12                     | -     | -                  | V     |  |  |  |  |
| Gate Threshold Voltage                                                   |                   | V <sub>GS(th)</sub> | $V_{SS} = V_{GS}, I_S = 0.84 \text{mA}$         | · -                    | 0.9   | 1.4                | V     |  |  |  |  |
| Cut-Off Current                                                          |                   | I <sub>SSS</sub>    | $V_{SS} = 12V, V_{GS} = 0V$                     | -                      | -     | 1.0                | μA    |  |  |  |  |
| Gate Leakage Current                                                     |                   | I <sub>GSS</sub>    | $V_{GS} = \pm 8V, V_{SS} = 0V$                  | -                      | -     | 10                 | μA    |  |  |  |  |
| Source-Source Resistance                                                 |                   | R <sub>SS(ON)</sub> | $V_{GS} = 4.5V, I_{S} = 4.0A$                   | -                      | 4.0   | 5.1                | - mΩ  |  |  |  |  |
|                                                                          |                   |                     | $V_{GS} = 3.8V, I_{S} = 4.0A$                   | -                      | 4.3   | 5.5                |       |  |  |  |  |
|                                                                          |                   |                     | $V_{GS} = 3.1V, I_S = 4.0A$                     | -                      | 4.8   | 6.8                |       |  |  |  |  |
|                                                                          |                   |                     | $V_{GS} = 2.5V, I_{S} = 4.0A$                   | -                      | 5.9   | 10                 |       |  |  |  |  |
| Dynamic Characteristics                                                  |                   |                     |                                                 | ·                      | ·     |                    |       |  |  |  |  |
| Total Gate Charge                                                        |                   | Qg                  |                                                 | -                      | 32.4  | -                  |       |  |  |  |  |
| Gate-Source Charge                                                       |                   | $Q_gs$              | V <sub>DD</sub> = 10V, I <sub>S</sub> = 4.0A, V | / <sub>GS</sub> = 4V - | 7.5   | -                  | nC    |  |  |  |  |
| Gate-Drain Charge                                                        |                   | $Q_gd$              |                                                 | -                      | 12.6  | -                  | 1     |  |  |  |  |
| Input Capacitance                                                        |                   | $C_{\text{iss}}$    |                                                 | -                      | 2,023 | -                  |       |  |  |  |  |
| Reverse Transfer Capacitance                                             |                   | C <sub>rss</sub>    | $V_{SS}$ = 10V, $V_{GS}$ = 0V, f                | = 1 MHz                | 553   | -                  | pF    |  |  |  |  |
| Output Capacitance                                                       |                   | $C_{oss}$           |                                                 | -                      | 482   | -                  | ]     |  |  |  |  |
| Turn-On Delay Time                                                       |                   | t <sub>d(on)</sub>  |                                                 | -                      | 0.2   | -                  |       |  |  |  |  |
| Rise Time<br>Turn-Off Delay Time                                         |                   | tr                  | V <sub>GS</sub> = 4V, V <sub>DD</sub> = 10V,    | -                      | 1.6   | -                  | - μS  |  |  |  |  |
|                                                                          |                   | $t_{d(off)}$        | $I_{S} = 4.0A, R_{GEN} = 3\Omega$               | -                      | 2.7   | -                  |       |  |  |  |  |
| Fall Time                                                                |                   | t <sub>f</sub>      |                                                 | -                      | 9.8   | -                  |       |  |  |  |  |

Note \*1. Mounted on PCB Board (25.4mm x 25.4mm)



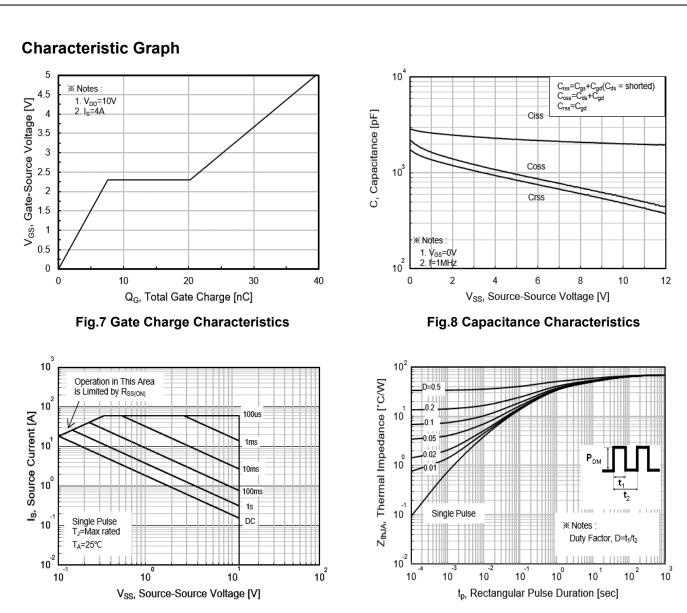
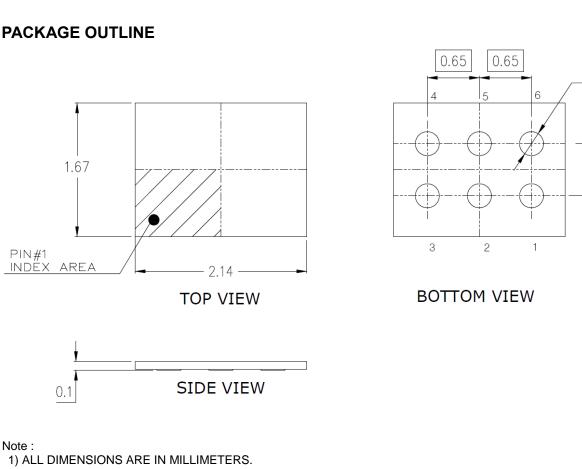




Fig.9 Maximum Safe Operating Area

Fig.10 Transient Thermal Impedance Curve



2) GENERAL TOLERANCE :  $\pm$  0.03 mm

3) PACKAGE BODY SIZES EXCLUDE FLASH & BURRS

#### DISCLAIMER:

The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. Seller's customers using or selling Seller's products for use in such applications do so at their own risk and agree to fully defend and indemnify Seller.

Magnachip reserves the right to change the specifications and circuitry without notice at any time. Magnachip does not consider responsibility for use of any circuitry other than circuitry entirely included in a Magnachip product. The Magnachip is a registered trademark of Magnachip Semiconductor Ltd.

Ø 0.30

0.65