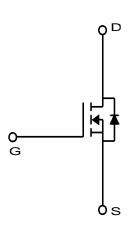


MDE10N050RH

Single N-channel Trench MOSFET 100V, 120A, $5.0m\Omega$

General Description

The MDE10N050RH uses advanced Magnachip's MOSFET Technology, which provides high performance in on-state resistance, fast switching performance, and excellent quality.


These devices can also be utilized in industrial applications such as Low Power Drives of E-bike (E-Vehicles), DC/DC converter, and general purpose applications.

Features

- V_{DS} = 100V
- I_D = 120A @V_{GS} = 10V
- Very low on-resistance $R_{DS(ON)}$ < 5.0 mΩ @V_{GS} = 10V
- 100% UIL Tested
- 100% Rg Tested
- 175 °C operating temperature

Absolute Maximum Ratings (T_J = 25 °C)

Char	Symbol	Rating	Unit		
Drain-Source Voltage	V _{DSS}	100	V		
Gate-Source Voltage		V _{GSS}	±20	V	
	T _C =25°C (Silicon Limited)		136		
Continuous Drain Current (1)	T _C =25°C (Package Limited)	I _D	120	A	
	T _C =100°C (Silicon Limited)		96		
Pulsed Drain Current (2)		I _{DM}	480		
Danier Diagination	T _C =25°C		188	W	
Power Dissipation	T _C =100°C	P _D	93		
Single Pulse Avalanche Energy (3)		E _{AS}	288	mJ	
Junction and Storage Temperature Range		T _J , T _{stg}	-55~175	°C	

Thermal Characteristics

Characteristics	Symbol	Rating	Unit	
Thermal Resistance, Junction-to-Ambient (1)	$R_{\theta JA}$	40	°C/W	
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.8		

Ordering Information

Part Number	Temp. Range	Package	Packing	RoHS Status
MDE10N050RH	-55~175°C	TO-263	Reel	Halogen Free

Electrical Characteristics (T_J =25°C)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
Static Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	BV_{DSS} $I_{D} = 250 \mu A, V_{GS} = 0 V$	100	-	-	V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	-	4.0	
Drain Cut-Off Current	I _{DSS}	$V_{DS} = 100V, V_{GS} = 0V$	-	-	1.0	μА
Gate Leakage Current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±0.1	
Drain-Source ON Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 50A$	-	4.2	5.0	mΩ
Forward Transconductance	g fs	$V_{DS} = 10V, I_D = 50A$	-	80	-	S
Dynamic Characteristics						
Total Gate Charge	Q_g		-	78	-	nC
Gate-Source Charge	Q_{gs}	$V_{DS} = 50V, I_{D} = 50A, V_{GS} = 10V$	-	24	-	
Gate-Drain Charge	Q_{gd}	. 163	-	17	-	
Input Capacitance	C _{iss}		-	5,429	-	pF
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 40V, V_{GS} = 0V,$ f = 1.0MHz	-	47	-	
Output Capacitance	C _{oss}	1 – 1.011112	-	1,108	-	
Turn-On Delay Time	t _{d(on)}		-	27	-	
Rise Time	t _r	$V_{GS} = 10V, V_{DS} = 50V,$	-	14	-	
Turn-Off Delay Time	t _{d(off)}	$I_D = 50A$, $R_G = 3.0\Omega$	-	63	-	ns ns
Fall Time	t _f		-	15	-	
Gate Resistance	Rg	f=1 MHz	-	2.5	-	Ω
Drain-Source Body Diode Characteristics	3		·	1	1	
Source-Drain Diode Forward Voltage	V _{SD}	$I_{S} = 50A, V_{GS} = 0V$	-	0.9	1.2	V
Body Diode Reverse Recovery Time	t _{rr}	1 504 41/44 4004	-	62		ns
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 50A$, dl/dt = 100A/ μ s	-	124		nC

- Surface mounted FR-4 board by JEDEC (jesd51-7)
- 2.
- Pulse width limited by T_{Jmax} E_{AS} is tested at starting $T_j = 25 \, ^{\circ}\text{C}$, L = 1.0mH, I_{AS} = 24A, V_{GS} = 10V

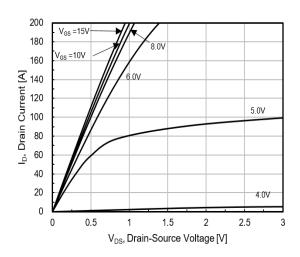


Fig.1 On-Region Characteristics

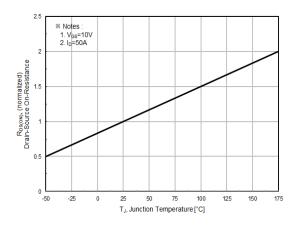


Fig.3 On-Resistance Variation with Temperature

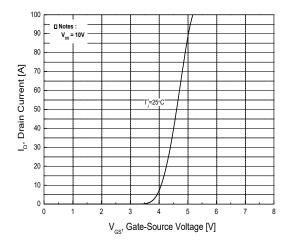


Fig.5 Transfer Characteristics

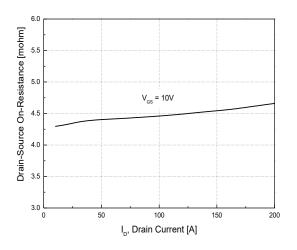


Fig.2 On-Resistance Variation with Drain Current and Gate Voltage

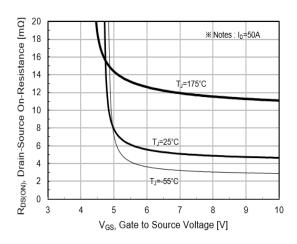


Fig.4 On-Resistance Variation with Gate to Source Voltage

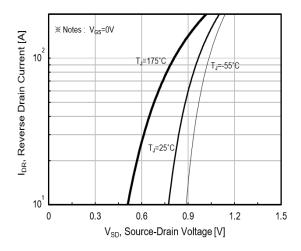


Fig.6 Body Diode Forward Voltage Variation with Source Current and Temperature

Magnachip Semiconductor Ltd.

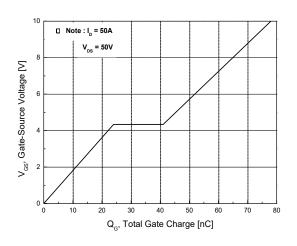


Fig.7 Gate Charge Characteristics

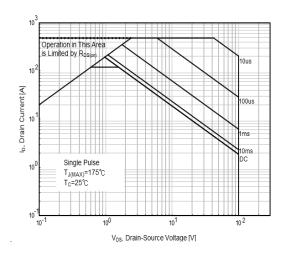


Fig.9 Maximum Safe Operating Area

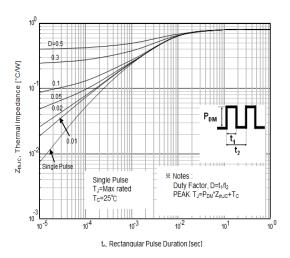


Fig.11 Transient Thermal Response Curve

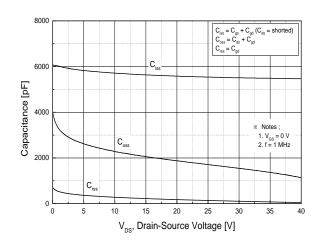


Fig.8 Capacitance Characteristics

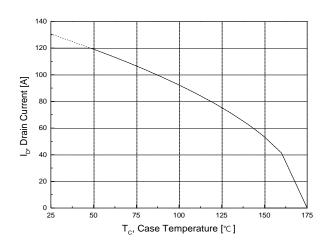
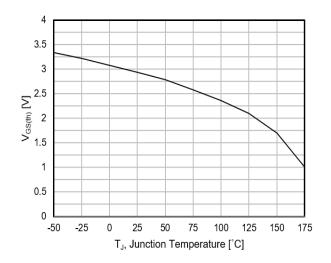
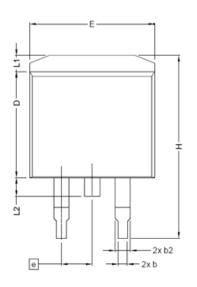
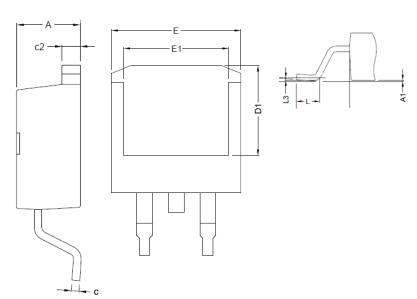


Fig.10 Maximum Drain Current vs. Case Temperature


Fig.12 VGS(th) Variation with Junction Temperature

Package Dimension

TO-263

Dimensions are in millimeters unless otherwise specified

Sl	Millimeters (mm)			
Symbol	Min	Max		
Α	4.064	4.826		
A1	1	0.254		
b	0.508	0.99		
b2	1.140	1.778		
С	0.310	0.736		
c2	1.140	1.650		
D	8.382	9.652		
D1	6.6	-		
E	9.652	10.668		
E1	6.223	-		
е	BSC 2.54			
Н	14.605	15.875		
L	1.778	2.794		
L1		1.676		
L2	-	1.778		
L3	BSC 0.254			

Note: Package body size, length and width do not include mold flash, protrusions and gate burrs.

5

DISCLAIMER:

The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. Seller's customers using or selling Seller's products for use in such applications do so at their own risk and agree to fully defend and indemnify Seller.

Magnachip reserves the right to change the specifications and circuitry without notice at any time. Magnachip does not consider responsibility for use of any circuitry other than circuitry entirely included in a Magnachip product. Magnachip is a registered trademark of Magnachip Semiconductor Ltd.