1

MAP3612

2-CH Average Current Control Buck Controller for LED Backlight

General Description

MAP3612 is a 2 channel average-mode current control buck controller for LED backlight application. It does not require an additional dimming MOSFET and utilizes constant off-time control and average current control feedback without external loop compensation or high-side current sensing.

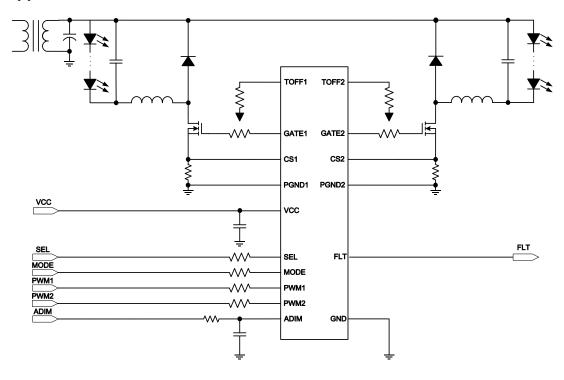
MAP3612 features $\pm 1\%$ CS voltage accuracy and has dedicated analog dimming input up to 3V. It can be powered from $8.5V \sim 18V$ supply.

MAP3612 provides MOSFET DS short detection(FLT output), SCP, ODP and UVLO.

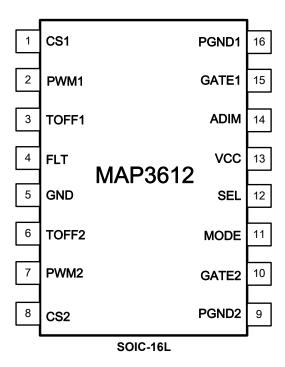
MAP3612 is available 16 leads SOIC with Halogen-free (fully RoHS compliant).

Features

- 8.5V to 18V Input Voltage Range
- Average-Mode Current Control
- Programmable Constant Off-time
 - Independent Setting per Channel
- Up to 3V Analog Dimming Input
- 1% CS Voltage Accuracy
- Independent Direct PWM Dimming Input
- Fault Output
 - MOSFET Drain-Source Short
- Short Circuit Protection
- Over-Duty Protection
- IIVI O
- 16 Leads SOIC Package with Halogen-free


Applications

- High Brightness white LED backlighting for LCD TVs
- General LED lighting applications


Ordering Information

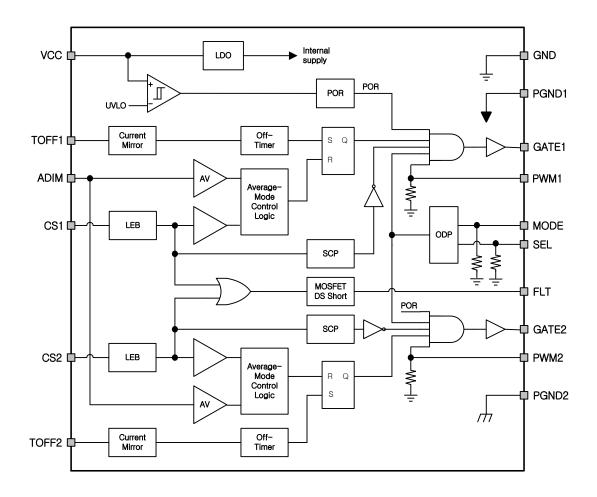
Part Number	Top Marking	Ambient Temperature Range	Package	RoHS Status
MAP3612SIRH	MAP3612	-40℃ to +85℃	16Leads SOIC	Halogen Free

Typical Application

Pin Configuration

Pin Description

16leads SOIC	Name	Description	
1	CS1	External current sense for CH1(Note 1).	
2	PWM1	PWM signal input for CH1.	
3	TOFF1	Setting for GATE off-time for CH1(Note 2)	
4	FLT	Fault Output	
5	GND	Ground	
6	TOFF2	Setting for GATE off-time for CH2(Note 2)	
7	PWM2	PWM signal input for CH2.	
8	CS2	external current sense for CH2(Note 3).	
9	PGND2	Power GND for CH2	
10	GATE2	GATE driver output to drive external NMOSFET for CH2	
11	MODE	Enable logic input for Over-Duty protection. Default logic 'Low' (Note 4)	
12	SEL	Logic input for selecting OD1 or OD2 protection. Default logic 'Low' (Note 5)	
13	VCC	Power supply input. Need external bypass capacitor	
14	ADIM	Setting for LED current thru external DC voltage	
15	GATE1	GATE driver output to drive external NMOSFET for CH1	
16	PGND1	Power GND for CH1	


Note 1: Connect external resistor to PGND1 to sense the external power MOSFET source current as shown in typical application

Note 2: Connect external resistor to GND to set GATE off-time as shown in typical application

Note 3: Connect external resistor to PGND2 to sense the external power MOSFET source current as shown in typical application

Note 4: Logic 'H' → ODP disable, Logic 'L' or floating → ODP enable
Note 5: Logic 'H' → OD1 protection, Logic 'L' or floating → OD2 protection

Functional Block Diagram

Absolute Maximum Ratings(Note 1)

Symbol	Symbol Parameter		Max	Unit
$V_{VCC}, V_{GATE1}, V_{GATE2}, V_{PWM1}, V_{PWM2}, V_{MODE}, V_{SEL}$	VCC, GATE1, GATE2, PWM1, PWM2, MODE, SEL pins Voltage	-0.3	20	V
$V_{\text{CS1}},V_{\text{CS2}},V_{\text{TOFF1}},V_{\text{TOFF2}},V_{\text{ADIM}},V_{\text{FLT}}$	CS1, CS2, TOFF1, TOFF2, ADIM, FLT pins Voltage	-0.3	5	V
T _{PAD}	Soldering Lead/ Pad Temperature 10sec		300	°C
TJ	Junction Temperature	-40	+150	°C
Ts	Storage Temperature	-65	+150	°C
ESD	HBM on All Pins (Note 2)	-2000	+2000	V
E3D	MM on All Pins (Note 3)	-200	+200	v

Note 1: Stresses beyond the above listed maximum ratings may damage the device permanently. Operating above the recommended conditions for extended time may stress the device and affect device reliability. Also the device may not operate normally above the recommended operating conditions. These are stress ratings only.

Note 2: ESD tested per JESD22A-114. Note 3: ESD tested per JESD22A-115.

Recommended Operating Conditions (Note 1)

Parameter		Min	Max	Unit
$V_{ m Vcc}$	Supply Input Voltage	8.5	18.0	V
V_{ADIM}	ADIM Input Range	0.5	3.0	V
T _A	Ambient Temperature (Note 2)	-40	+85	°C

Note 1: Normal operation of the device is not guaranteed if operating the device over outside range of recommended conditions.

Note 2: The ambient temperature may have to be derated if used in high power dissipation and poor thermal resistance conditions.

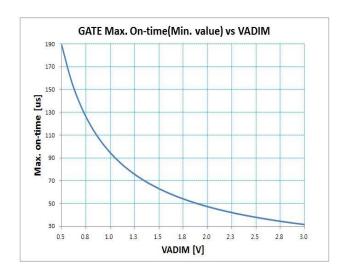
Package Thermal Resistance (Note 1)

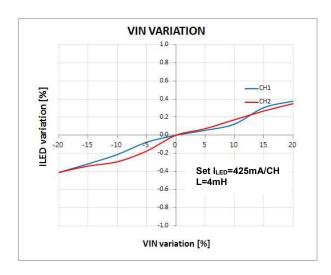
Parameter		θJA	θJC	Unit
MAP3612SIRH	16 Leads SOIC	65.1	25.3	°C/W

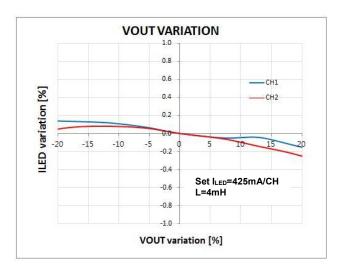
Note 1: Multi-layer PCB based on JEDEC standard (JESD51-7)

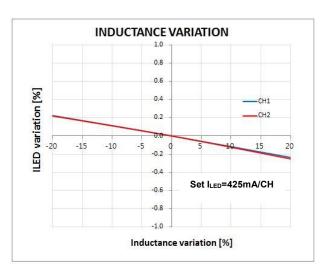
Electrical Characteristics

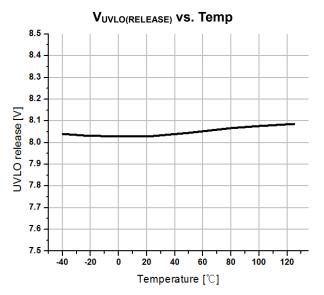
Unless noted, V_{VCC} = 12V, C_{VCC} = 1.0 μ F, and typical values are tested at T_A = 25 $^{\circ}$ C.

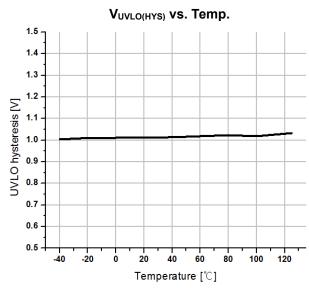

	Parameter	Test Condition	Min	Тур	Max	Unit
Supply		T		1	· · · · · · · · · · · · · · · · · · ·	
V_{VCC}	Input Voltage Range		8.5		18	V
I_Q	Quiescent Current	$V_{PWM} = 5V, V_{CS} = 0V$		3.4		mA
V	Under Voltage Lockout	Release threshold(rising V _{VCC})	7.5	8.0	8.5	V
V_{UVLO}	Threshold Voltage on VCC pin	Lockout hysteresis(falling V _{VCC})	0.5	1.0	1.5	V
OFF Time	r					
t	GATE1/2 Off-time	R _{TOFFx} =52kΩ	4.5	5.0	5.5	ше
t _{OFFx}	GATE 1/2 OII-tillle	R _{TOFFx} =104kΩ	9	10	11	us
t _{on_min}	Min. On-Time			300		ns
$t_{\text{ON_MAX}}$	Max. On-Time	V _{ADIM} = 3V		37		us
t_{OFF_MIN}	Min. Off-Time			1.2	1.5	us
D_{MAX}	Max. Duty Cycle	$V_{ADIM} = 3V$, $t_{OFF} = 1.2us$		97		%
GATE Dri	ver					
I _{SOURCE}	GATE1/2 Source Current	$V_{GATE1/2} = 0V,$	400			mA
I _{SINK}	GATE1/2 Sink Current	$V_{GATE1/2} = V_{VCC} = 12V$	800			mA
t _{RISE}	GATE1/2 Output Rising Time	C _{GATE1/2} =1nF, V _{VCC} = 12V		50	85	ns
t _{FALL}	GATE1/2 Output Falling Time	$C_{GATE1/2}$ =1nF, V_{VCC} = 12V		25	45	ns
Current S	ense & Dimming					
V_{ADIM}	ADIM Input Voltage Range		0.5		3.0	V
A _V	VADIM to CS1/2 Voltage Ratio			0.5075		V/V
	CC4/2 Valtaria	V _{ADIM} = 0.5V	0.2512		0.2563	V
$V_{CS1/2}$	CS1/2 Voltage	V _{ADIM} = 3.0V	1.5073		1.5377	
t _{LEB}	Leading Edge Blanking Time			300		ns
Logic Inte	erface			•		
	Logic Input Level on	V _{PWM1/2_L} : Logic Low			8.0	V
$V_{PWM1/2}$	PWM1/2 pins	V _{PWM1/2_H} : Logic High	2.0			
R _{PWM1/2}	Pull-down Resistor on PWM1/2 pins	$V_{PWM1/2} = 4V$	50	100	150	kΩ
	La via lavant Laval en MODE via	V _{MODE L} : Logic Low			0.8	.,
V_{MODE}	Logic Input Level on MODE pin	V _{MODE_H} : Logic High	2.0			V
R _{MODE}	Pull-down Resistor on MODE pin	V _{MODE} = 4V	50	100	150	kΩ
	Laria Irrott avalar CEL ris	V _{SEL_L} : Logic Low			0.8	V
V_{SEL}	Logic Input Level on SEL pin	V _{SEL H} : Logic High	2.0			
R _{SEL}	Pull-down Resistor on SEL pin	V _{SEL} = 4V	50	100	150	kΩ
Protectio	n					
A _{VSCP}	V _{ADIM} to SCP Voltage Ratio	0.5 <= V _{ADIM} <= 2.5V		1.7		V/V
		V _{ADIM} = 0.5V	0.8075	0.8500	0.8925	
V_{SCP}	SCP Detection Threshold Voltage	V _{ADIM} = 1.0V	1.6150	1.7000	1.7850	V
	on CS1/2 pins	V _{ADIM} = 2.5V	4.0375	4.2500	4.4625	
t _{DELAY}	SCP Delay Time	7,5		300		ns
t _{RESTART}	Restart Time			1		ms
TARICON	MOSFET DS Short Detection	V _{ADIM} = 0.5V (Note 1, 2)		0.25		5
V_{SCPDS}	Threshold Voltage on CS1/2 pins	V _{ADIM} = 0.5V (Note 1, 2)		1.25		V
V_{FLT}	FLT pin High Voltage	V ADIM - 2.0V (NOTE 1, 2)	4.5	1.20	5	V
R _{FLT}	FLT pin high voltage FLT pin Internal Resistance	V _{FLT} : Logic High	2.5		5	v kΩ
	Protection Duty for OD1	V _{FLT} . Logic High	55	57	59	% %
D _{OD1}	•		35		39	
D _{OD2}	Protection Duty for OD2	V = CND or Floating	35	37	39	
t_{OD}	Auto-Restart time for OD1/2	V _{MODE} = GND or Floating		100		ms

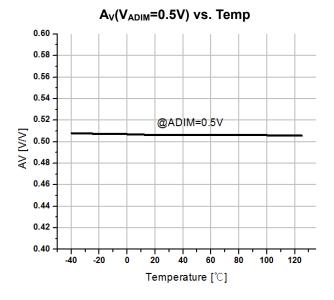

Note 1: These parameters, although guaranteed by design, are not tested in mass production.

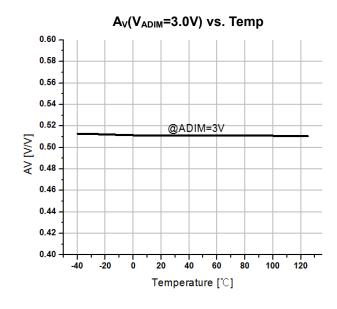

Note 2: At start-up($V_{VCC} >= V_{UVLO}$ release threshold)

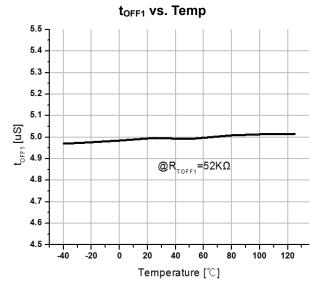

Typical Operating Characteristics

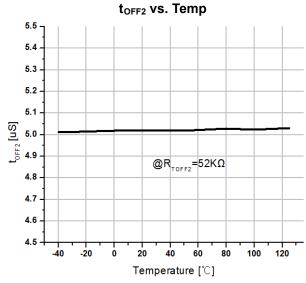

Unless otherwise noted, V_{VCC} = 12V and T_A = 25°C.

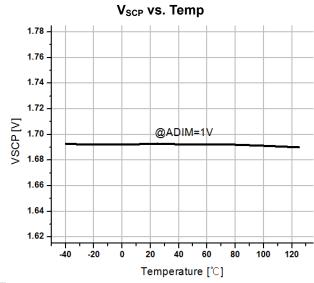


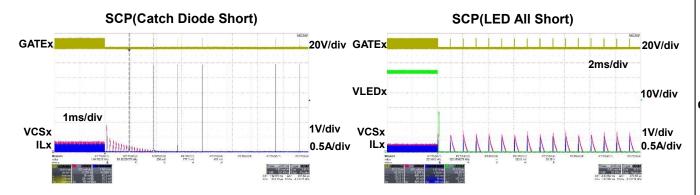


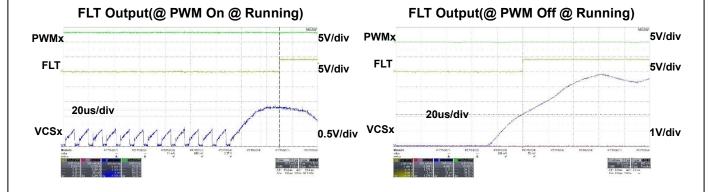


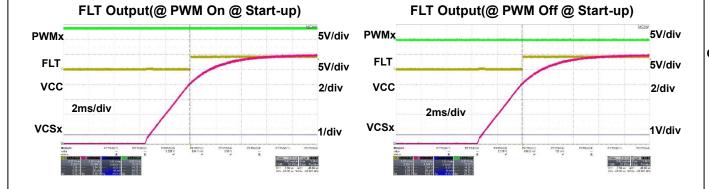


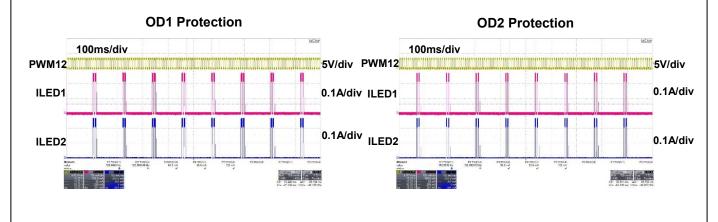

Typical Operating Characteristics


Unless otherwise noted, V_{VCC} = 12V and T_A = 25°C.



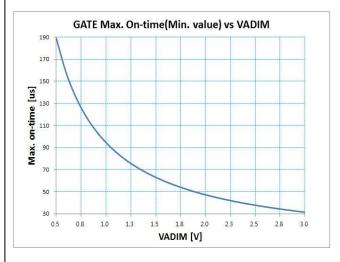

Magnachip 🖔


Typical Operating Characteristics Unless otherwise noted, V_{VCC} = 12V and T_A = 25°C. **Constant Current Control** Min. Dimming(Cout=330nF) 5V/div **PWMx GATE**x 20V/div ILED1 50mA/div ILED2 10V/div GATE1 0.2A/div ILx ILEDx 20us/div 0.2A/div Soft-start(PWM Dimming, Cout=330nF) Soft-start(Initial, Cout=330nF) **VLED**x 20V/div VLEDx 20V/div 0.2V/div 0.2A/div ILx 0.2A/div **VCSx** 0.5V/div 20us/div 50us/di ILEDx 0.2A/div ILEDx 0.2A/div **UVLO** Release **UVLO Lockout GATE**x 10V/div vcc 2V/div VCC-2V/div 0.1A/div 0.2A/div GATE1 20V/div 20V/div GATE2 V_{ADIM} Off SCP(Inductor Short) 0.2V/div^{GATE}x 20V/div **ADIM ILED**x 0.1A/div 1ms/div 20V/div VCSx 1V/div GATE1 0.5A/div GATE2 20V/div


Typical Operating Characteristics

Unless otherwise noted, V_{VCC} = 12V and T_A = 25°C.

Functional Description


GENERAL DESCRIPTION

The MAP3612 is a 2-channel low-side single switch control, constant off-time buck controller optimized to LED backlight applications. The IC employs unique average-mode current control architecture which provides precise LED current accuracy. It does not require any external loop compensation or high side current sensing.

The IC operates at continuous conduction mode to reduce output ripple, thus small output capacitor is available. The off-time is user adjustable through the selection of an external resistor, this allows the design to be optimized for a given switching frequency range and supports wide range of input voltages.

MAX. ON-TIME

The max. on-time of GATE is limited according to ADIM voltage as following graph.

Care should be taken to choose input voltage which should not exceed this on-time limit(especially OD2 mode).

The on-time of GATE can be calculated by following equations.

$$D = \frac{V_{LED}}{V_{IN}}$$

$$t_{OFF}[us] = \frac{38.4}{400} \times R_{TOFF}[k\Omega]$$

$$t_{ON} = \frac{D \times t_{OFF}}{1 - D}$$

Finally, ton < ton_MAX_Min Value

TOFF SETTING

The off-time of the GATE driver is programmed by an external resistor connected between the TOFFx pin and ground. Do not leave this pin open. The off-time is calculated by following equation.

$$R_{TOFFx} = \frac{0.4 \times t_{OFF}[us] \times 1000}{38.4} [k\Omega]$$

It can be set independently for each channels.

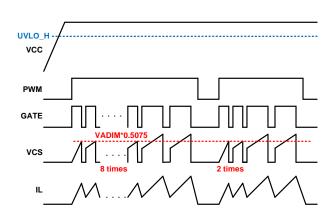
LED CURRENT

The LED current is calculated by following equation.

$$I_{LED} = \frac{0.5075 \times V_{ADIM}}{R_{CS}} [A]$$

The ADIM voltage range is from 0.5V to 3V.

In terms of total system accuracy of LED current, larger inductance and slower switching frequency are recommendable to get better accuracy.


PWM DIMMING

The brightness control of the LEDs is performed by a pulse-width modulation. The GATE output is valid only at PWM on period. This means that the GATE maintains off-state as long as PWM signal is logic low.

Care should be taken to test at low PWM duty-cycle because the output capacitor can affect rising and falling time of LED current due to its charging and discharging time.

SOFT-START

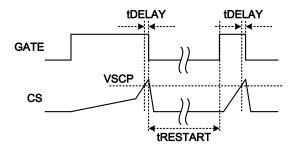
The MAP3612 operates at peak current mode at initial start-up and every rising edge of PWM input to smooth inductor current ramp-up(output capacitor charging phase). The number of peak-controlled switch cycles is 8 times at initial start-up and 2 times at every PWM rising edge as following figure.

OVER-DUTY PROTECTION

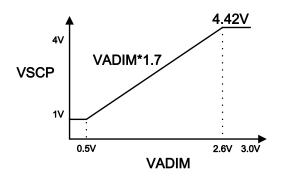
The MAP3612 provides over-duty protection for PWM inputs in case the MODE pin is logic 'LOW' or floated. In general, this status is 3D mode in TV applications.

The logic status on the SEL pin decides the protection duty of PWM inputs as following table.

Available Duty		Duty Protection	
OD1 Up to 55%		ODP over 56%	
OD2	Up to 35%	ODP over 36%	


Following table summarizes the relationship between MODE, SEL pins and ODP.

Input	ut HIGH LOW or FLOATI	
MODE	DE 2D 3D	
SEL	OD1	OD2

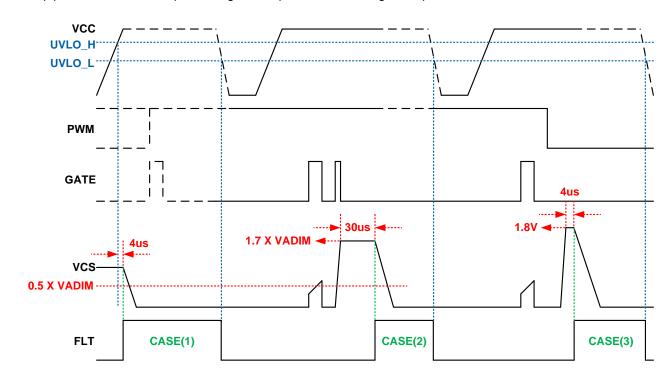

At the ODP status, the MAP3612 rechecks the protection status at every 100ms. If the error is removed, the IC status will be automatically recovered.

SCP

If the CS voltage rises V_{SCP} during normal operation, the MAP3612 turns-off the GATE output after $t_{\text{DELAY}}(\text{typ. }300\text{ns})$ time. The auto-restart time is typ. 1ms(trestart). This protects for hard instantaneous short such as catch diode, inductor or LED bar short.

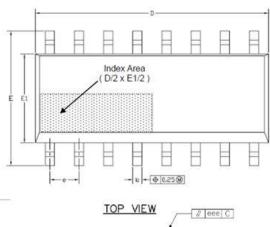
The SCP voltage varies according to ADIM voltage as following graph.

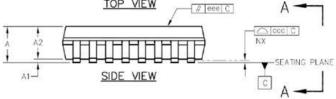
UVLO

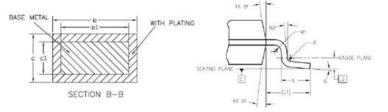

The MAP3612 has an Internal LDO regulator to supply internal circuit and GATE driver. This LDO is powered up when the VCC voltage rises to UVLO release threshold. If the voltage on the VCC pin falls below UVLO lockout

If the voltage on the VCC pin falls below UVLO lockout threshold, the device turns-off the GATE output and be reset. This ensures fail-safe operation for VCC input voltage falling.

MOSFET D-S Short Detection & FLT Output


In case the following drain-source short events of external MOSFET occur, the FLT pin goes to logic HIGH state immediately. This shuts off the whole system power supply. The protection status is latched and can be cleared by applying a complete power-on-reset(POR).


- CASE(1): At start-up Regardless of PWM logic state, if VCS is equal or over than 0.5*VADIM and last over 4us. FLT pin voltage goes HIGH level before the first GATE output if PWM is logic HIGH state.
- CASE(2): At dimming(PWM=logic HIGH) At first, SCP will be occured. Even though the GATE is off-state by SCP, if the CS voltage is equal or over than 1.7*VADIM and last over 30us.
- CASE(3): At other condition(PWM=logic LOW) If the CS voltage is equal or over than 1.8V and lasts over 4us.



The FLT pin is at logic low state when no error is detected.

Physical Dimensions

16 Leads SOIC

Symbol	Min	Nom	Max
А		•	1.80
A1	0.05	151	0.25
A2	1.25		8
b	0.31		0.51
b1	0.28	-	0.48
С	0.10	544	0.30
c1	0.10	120	0.23
D	9.70	120	10.10
E	5.70		6.30
E1	3.75	150	4.15
е	1.14	1.27	1.40
L	0.40		1.27
L1		1.04 REF	
L2		0.25 BSC	
R	0.07	193	2
R1	0.07	WEX 1	10
θ	0°		8°
01	0°	- 30	15°

Magnachip Semiconductor Ltd. doesn't not recommend the use of its products in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any product can reasonably be expected to result in a personal injury. Seller's customers using or selling Seller's products for use in such applications do so at their own risk and agree to fully defend and indemnify Seller.

Magnachip reserves the right to change the specifications and circuitry without notice at any time. Magnachip does not consider

responsibility for use of any circuitry other than circuitry entirely included in a Magnachip product.

Magnachip is a registered trademark of Magnachip Semiconductor Ltd.